Multidrug resistance-related protein 1 (MRP1) function and localization depend on cortical actin.

نویسندگان

  • Ina Hummel
  • Karin Klappe
  • Cigdem Ercan
  • Jan Willem Kok
چکیده

MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This results in partial loss of actin and Mrp1/MRP1 (Abcc1/ABCC1) from detergent-free lipid raft fractions, partial internalization of Mrp1/MRP1 (Abcc1/ABCC1), and reduction of Mrp1/MRP1 (Abcc1/ABCC1)-mediated efflux. Pretreatment with nocodazole prevents latrunculin B-induced loss of cortical actin and all effects of latrunculin B on Mrp1 (Abcc1) localization and activity. However, pretreatment with tyrphostin A23 does not prevent latrunculin B-induced loss of cortical actin, lipid raft association, and efflux activity, but it does prevent latrunculin B-induced internalization of Mrp1 (Abcc1). Cytochalasin D disrupts actin stress fibers but not cortical actin and this inhibitor much less affects Mrp1/MRP1 (Abcc1/ABCC1) localization in lipid rafts, internalization, and efflux activity. In conclusion, cortical actin disruption results in reduced Mrp1/MRP1 (Abcc1/ABCC1) activity concomitant with a partial shift of Mrp1/MRP1 (Abcc1/ABCC1) out of lipid raft fractions and partial internalization of the ABC transporter. The results suggest that reduced Mrp1 (Abcc1) function is correlated to the loss of lipid raft association but not internalization of Mrp1 (Abcc1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

BACKGROUND One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. AIM This study aimed to compare the localization of M...

متن کامل

Expression and cellular distribution of multidrug resistance-related proteins in patients with focal cortical dysplasia

Recent arouse of interest indicated that drug resistant proteins are markedly over-expressed in the epileptogenic tissue and they may be responsible for the one-third of the epileptic patients who were refractory to anti-epileptic drugs (AEDs). Since several AEDs may act as substrates for these drug resistant proteins, the enhanced function of such proteins may increase drug extrusion, resultin...

متن کامل

Role of the NH2-terminal Membrane Spanning Domain of Multidrug Resistance Protein 1/ABCC1 in Protein Processing and Trafficking□D

Multidrug resistance protein (MRP)1/ABCC1 transports organic anionic conjugates and confers resistance to cytotoxic xenobiotics. In addition to two membrane spanning domains (MSDs) typical of most ATP-binding cassette (ABC) transporters, MRP1 has a third MSD (MSD0) of unknown function. Unlike some topologically similar ABCC proteins, removal of MSD0 has minimal effect on function, nor does it p...

متن کامل

Nuclear Multidrug-Resistance Related Protein 1 Contributes to Multidrug-Resistance of Mucoepidermoid Carcinoma Mainly via Regulating Multidrug-Resistance Protein 1: A Human Mucoepidermoid Carcinoma Cells Model and Spearman's Rank Correlation Analysis

BACKGROUND Multidrug resistance-related protein 1 (MRP1/ABCC1) and multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1) are both membrane-bound drug transporters. In contrast to MDR1, MRP1 also transports glutathione (GSH) and drugs conjugated to GSH. Due to its extraordinary transport properties, MRP1/ABCC1 contributes to several physiological functions and pathophysiological incidents. ...

متن کامل

Subcellular localization and activity of multidrug resistance proteins.

The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2011